

high efficiency electrochemical system for energy

BIOGAS FED FUEL CELL SYSTEMS FOR INDUSTRIAL APPLICATIONS

DEMOSOFC: presentation of the project

Prof. Massimo Santarelli, Politecnico di Torino Project Manager

Torino, September 24th, 2015

Introduction: energy context in EU

Energy Context: EU

From the point of view of energy policy, the **European Strategic Energy Technology (SET) Plan for 2020** identifies Strategic Technologies Focus on the following priorities:

- Energy Efficiency: high efficiency conversion devices represent elements of a higher efficiency portfolio
- Renewable Energy: traditional RES (solar, wind, hydro) but also biogenous fuels (biogas, bio-syngas, bio-fuels) and new synthetic vectors (H2, synthetic NG,....)
- Carbon capture and storage: mitigation of CO2 emissions (related to efficient energy conversion devices, and improved adoption of RES fuels) and CO2 recovery and re-use
- Smart Grid: wide topic, in which several technologies are included (energy storage, ICT intelligence, prosumer, distributed CHP plants, ...)

European Commission Communication (2010) "EUROPE 2020 A strategy for smart, sustainable and inclusive growth". European Commission Communication (2011) "Energy Roadmap 2050".

- Distributed CHP with high energy efficiency exploiting CO2 neutral fuels for industrial and commercial applications.
- In this context: urgency for the adoption of innovative energy systems with significantly higher efficiency and lower emissions: electrochemical systems – in particular high temperature fuel cell systems (e.g., SOFC) – represent the best option especially at the sub-MW scale.
- Then: need for increasing market opportunities for the SOFC leading toward final market acceptance. This can be accomplished through field demonstration that aims to show the high energy and environmental advantages of the SOFC to both the broader energy community as well as decision makers who are willing to support sustainable technologies.

Introduction: the EU strategy

Proposal full title:	DEMOnstration of large SOFC system fed with biogas from WWTP
Proposal	DEMOSOFC
acronym:	
Call:	FCH2 JU CALL FOR PROPOSALS 2014
Topic:	FCH-02.11-2014: Large scale fuel cell power plant demonstration in industrial/commercial market segments

Grant agreement no: 671470

Project Coordinator: Prof. Massimo SANTARELLI (Energy Department, Politecnico di Torino)

Start 01/09/2015 **End** 31/08/2020

Total Budget: 5′905′336 € **EU Contribution**: 4′492′562 €

Participant No *	Participant organisation	n name	Country
1 (Coordinator)	POLITO	POLITECNICO DI TORINO	Italy
2	CONVION	Convion	Finland
3	SMAT (+ linked Third Party RISORSE IDRICHE spa)	gruppo	Italy
4	VTT		Finland
5	IMPERIAL COLLEGE	Imperial College London	United Kingdom

DEMOSOFC: Energy Concept

- Zero emissions to atmosphere (no NOx, SOx, VOC...)
- 100% modular system

DEMOSOFC: Objectives

- DEMO: <u>design</u>, <u>engineering</u>, <u>installation</u> of a medium-scale (174 kW_e) distributed CHP system based on SOFC and fed with locally available biogas produced in an industrial-scale waste water treatment plant (WWTP).
- DEMO: <u>self-consumption in the WWTP of the electric power produced</u> by the SOFC system (distributed power generation with local use of power); <u>full thermal recovery from the SOFC system</u> (89 kW_{th}) to serve the thermal loads of the WWTP (optimization of CHP concept).
- **DEMO**: <u>management on the long run, maintenance experience</u>: all in a real industrial context.
- **ANALYSIS**: <u>energy and environmental analysis</u>: high interest for the society in terms of resources and emissions.
- **EXPLOITATION**: exploitation and <u>business analysis</u> high economic interest for the energy market.
- **DISSEMINATION**: strong dissemination for public awareness.

DEMOSOFC: SMAT WWTP in Collegno (Torino, IT)

Proof-of-Concept: SOFCOM Demo Layout - 1

SOFCOM Demonstration Plant

SOFCOM Demonstration plant

DEMOSOFC: follow-up of positive experience

DEMOSOFC: complete plant

DEMOSOFC: advantages of SOFC plants: efficiency

Sub-MW size (distributed CHP)			
	Micro Gas Turbine	Internal Combustion Engine	Solid Oxide Fuel Cell
Electrical efficiency	28.0%	38.5%	53%
Thermal efficiency	45.9%	23.3%	27% (37% with further cooling)
Total efficiency	74%	62%	80% (90% with further cooling)
CO₂ emission [gCO ₂ /kWh _e] with the system fed by NG	798	580	422

DEMOSOFC: advantages of SOFC plants: emissions

Sub-MW size (distributed CHP)

Contaminant	Emissions with ICE	Emissions with SOFC	
	fed by biogas	fed by biogas	
Total PM	2.31 mg/Nm ³	_	
NO _x	443 mg/Nm ³	< 1.23 mg/Nm ³	
SO _x	25.8 mg/Nm ³	negligible	
CO	353 mg/Nm ³	< 12.31 mg/Nm ³	
H ₂ S	< 0.2 mg/Nm ³	_	
VOC	659 mg/Nm ³	< 2.46 mg/Nm ³	
HCI	0.38 mg/Nm ³	_	
HF	< 0.2 mg/Nm ³	_	

Reduction of the use of primary energy by (a) Electrical efficiency > 45% ; (b) Total efficiency > 70% (heat cycle: 45°C/30°C)

Supplier and user experience of design, engineering, installation/commissioning and operation of distributed power generation

Building and validating references to build trust among the stakeholders

Enable active participation of consumers in order to bring the fuel cells technology closer to their daily business

DEMOSOFC: Business Perspective

Reduction of cost of SOFC technology

		SoA	KPI	KPI	KPI
		2014	2017	2020	2023
CAPEX	€/kW	6'000 –	5'000 -	4′500 –	3′500 –
		10'000	8'500	7'000	6'500

high efficiency electrochemical system for energy

DEMOSOFC: presentation of the project

Thanks a lot! Questions?

Torino, September 24th, 2015

