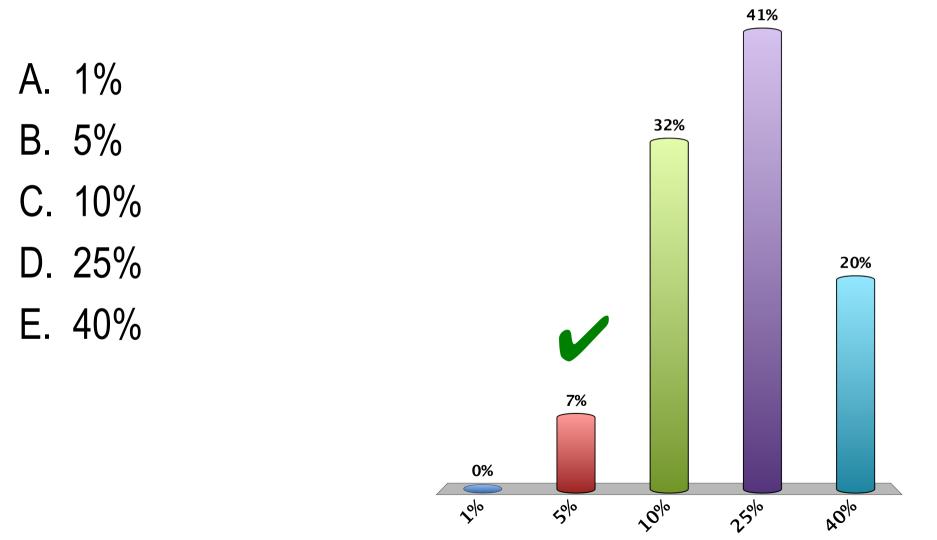
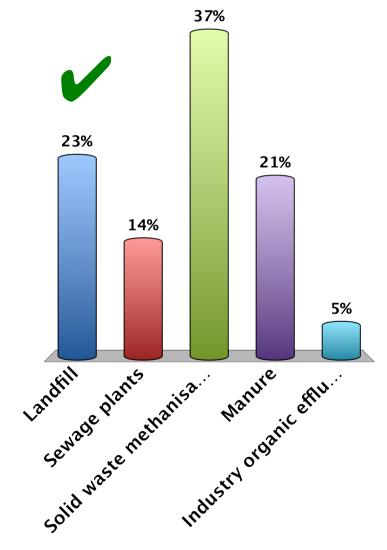

Biogas + SOFC: some considerations Jan Van herle

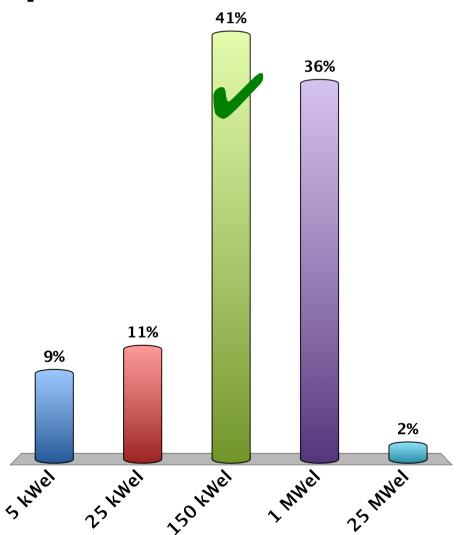
Torino DEMOSOFC kick-off 2015-Sep-24



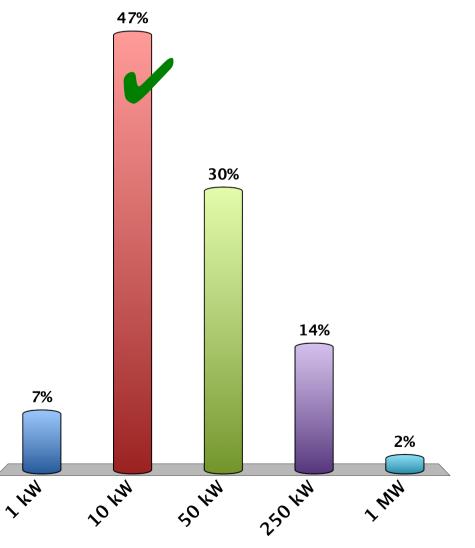
What is the *present* share of biogas energy in the total energy use? (EU) 34%


What is the *potential* share of biogas energy in the total energy use? (EU)

Which source is the biggest biogas producer? (worldwide, and in Europe)

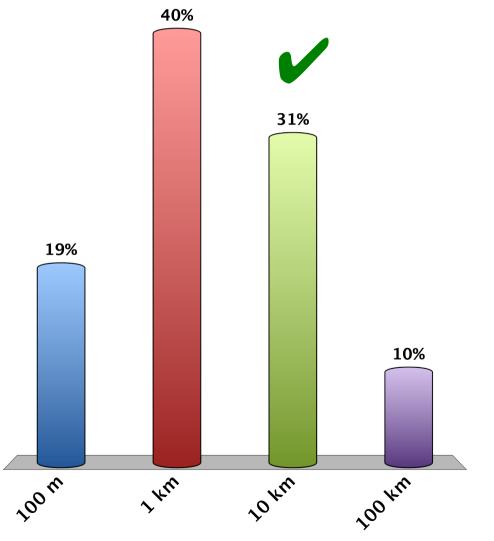

- A. Landfill
- B. Sewage plants
- C. Solid waste methanisation
- D. Manure
- E. Industry organic effluents

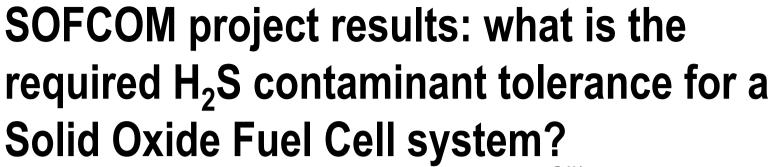
What electrical power size is typical for an existing biogas production site?


- A. 5 kW_{el}
- B. 25 kW_{el}
- C. 150 kW_{el}
- D. 1 MW_{el}
- E. 25 MW_{el}

Considering an <u>average</u> farm, how much energy from biogas could you recover?

- A. 1 kW
- B. 10 kW
- C. 50 kW
- D. 250 kW
- E. 1 MW

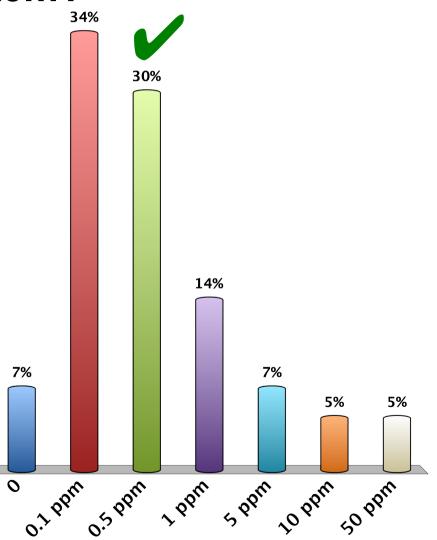




Jari's special: how far can you drive a car on one day's worth of bullshit...? (sorry)

(...converted into biogas)

- A. 100 m
- B. 1 km
- C. 10 km
- D. 100 km

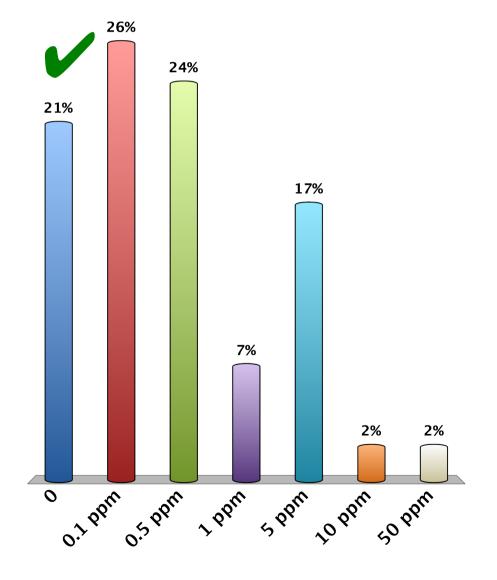


A. 0

- B. 0.1 ppm
- C. 0.5 ppm
- D. 1 ppm
- E. 5 ppm
- F. 10 ppm
- G. 50 ppm

And the HCl tolerance?

- A. 0
- B. 1 ppm
- C. 10 ppm
- D. 30 ppm
- E. 100 ppm



And siloxane contaminant tolerance?

A. 0

- B. 0.1 ppm
- C. 0.5 ppm
- D. 1 ppm
- E. 5 ppm
- F. 10 ppm
- G. 50 ppm

Anaerobic digestion

- transformation of organic (waste) streams that are too wet to burn
- the 1st objective is **depollution** from the organic charge => exploitation schemes are in place because it is 'mandatory' (for <u>sewage</u>, (food) industry <u>effluents</u>)
 => biogas = by-product
- farm waste (<u>manure</u>, crop <u>residues</u>) and <u>MSW/ISW</u>, by contrast, are largely untapped (underexploited)

=> biogas = energy vector (especially for electricity)

• inherent process drawback: digestion = slow

Digestion process (4 steps)

overall $\approx C_6 H_{12} O_6 \rightarrow 3 C H_4 + 3 C O_2$

1. Hydrolysis : *slowest,* rate-determining

cellulose, starch \rightarrow cellobiose, maltose, glucose

- **2.** Digestion : formation of organic acids acetic, propionic, butyric, lactic acid, ethanol, v. little H₂ and CO₂
- 3. Acidogenesis : all acids decomposed to => acetic acid, H₂, CO₂ $\approx C_6H_{12}O_6 + 2H_2O \rightarrow 2CH_3COOH + 2CO_2 + 4H_2$
- 4. Methanogenesis : 2 parallel pathways $2 \text{ CH}_3\text{COOH} \rightarrow 2 \text{ CH}_4 + 2 \text{ CO}_2 (70-80\% \text{ of CH}_4 \text{ product})$ $CO_2 + 4 \text{ H}_2 \rightarrow \text{CH}_4 + 2 \text{ H}_2\text{O} (20-30\% \text{ of CH}_4 \text{ product})$ These 2 parallel reactions explain why biogas compositions typically are (60±5)% CH₄ and (40±5%) CO₂

Biogas generation: energy balance

Buswell-Boyle formula:

$$C_{a}H_{b}O_{c}N_{d}S_{e} + \frac{1}{4}[4a - b - 2c + 3d + 2e]H_{2}O$$

$$\rightarrow \frac{1}{8}(4a + b - 2c - 3d - 2e)CH_{4}$$

$$+ \frac{1}{8}(4a - b + 2c + 3d + 2e)CO_{2}$$

$$+ \frac{dNH_{3}}{2} + \frac{eH_{2}S}{2}$$

e.g. for **manure**, approximated as $C_4H_8O_2$ (butyric acid):

$$C_4 H_8 O_2 + [4 - 2 - 1] H_2 O \rightarrow (2 + 1 - \frac{1}{2}) C H_4 + (2 - 1 + \frac{1}{2}) C O_2 = \frac{5}{8} C H_4 + \frac{3}{8} C O_2$$

1 kg dry = 18 MJ • 0.82 m³ biogas = 15.5 MJ

<u>Rem</u>: CO_2 , NH_3 , H_2S dissolve better in H_2O than CH_4 , hence the recovered gas is actually methane-enriched

Swiss biogas situation as example

	Today	Potential
Use (total)	3 PJ	30 PJ
Sites	435	>50'000
Installed power	82 MW _{el}	1 GW _{el}
Efficiency	35% (engines)	50% (SOFC)
Elec. production	0.3 TWh _{el}	4 TWh _{el} (-1.5 Mt CO ₂)
Share of total (elec.)	0.5%	6%
	X	10

EU-27: biogas use and potential

	2007	gas engines	ultimate			
Source	Use (PJ)	kW _e /site	Potential			
Effluents	7	200 kWe	140 PJ			
Sewage	37	100 kWe	215			
Manure	30	10-100 kWe	750			
Solid agro	45		1370			
MSW,ISW	15	0.1-1 MWe	330			
Landfill	120	1 MWe	-			
TOTAL	254 PJ	big margin	2805 PJ			
	(6 Mtoe)		(67 Mtoe)			
5 (0.6%	Nh _{el} 30% efficiency of total)	=25% of NG import in EL (Import: 310 billion m ³ / y				

Special case of landfill gas (LF)

- MW_{el} sized sites (gas engines, gas turbines)
- by far the largest fraction of world biogas (60%)
 (20 Mtoe, 23 billion m³ CH₄)
- nearly 50% share even in EU-27
- => not yet accessible by SOFC; maybe by MCFC
- 3rd most important anthropogenic GHG emitter (as CH₄)
- contaminated (F, CI, NH₃, H₂S, Si,...)
- low calorific value
 - engines stop running <45-50% CH_4
 - fuel-assisted flaring or venting !

'Economy of scale' is tiptoed with (agro)biogas installations

The existing exploitation paradigm:

to be able to install efficient engines (>100 kW_{el}, >35%), digesters are built big, hence waste <u>must</u> be collected in sufficient quantity => this excludes 'small' sites and 'enforces' larger waste concentration sites

Taking this chain by its tail:

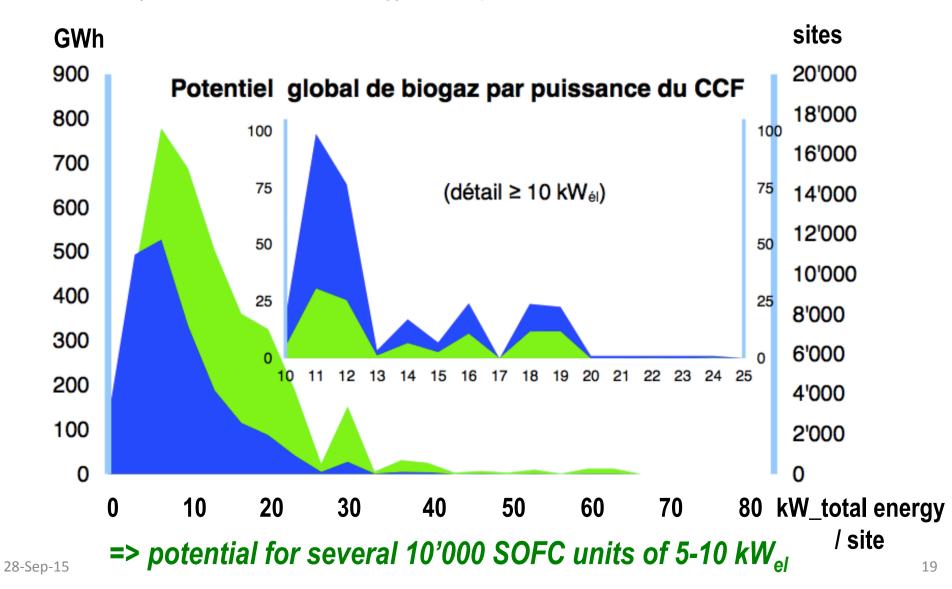
Waste is mostly available locally in 'small' quantities (**10 kW**) => a technology is needed to convert this efficiently on this scale => SOFCs (**50%**)

Energy from (animal) farms

- 1 cow (= 1 large cattle equivalent LCE)
- = 2.5 kg dry organics / day
- = 1.5 m³ biogas /day
- $= 0.9 \text{ m}^3 \text{ CH}_4 / \text{day}$
- = 30 MJ / day
- = 8 kWh / day (300 W per LCE)
- = 2 m² of solar thermal collectors
- = 10 km / day by (gas) car

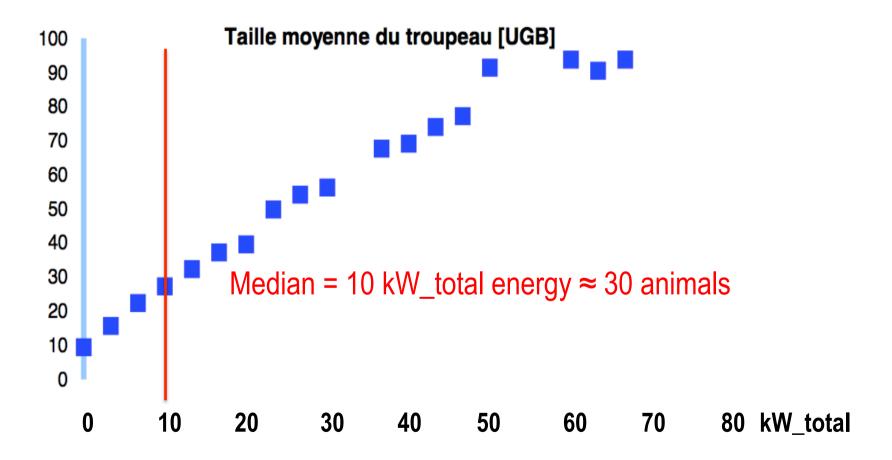
There are ca. half as many LCE as human beings on the planet...

 \Rightarrow 3 billion m³ CH₄ / day

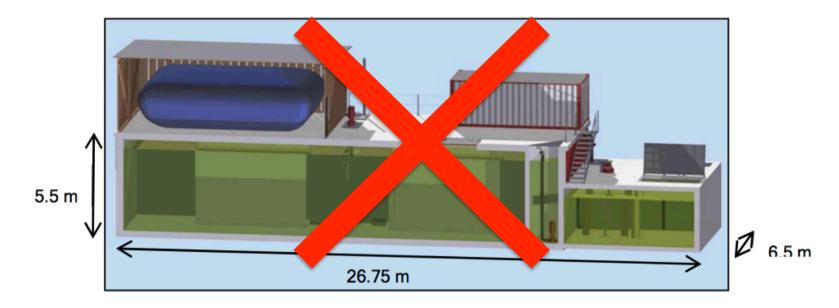

\Rightarrow 1100 billion m³ CH₄ / year

Compare with worldwide natural gas consumption of 3300 billion m³ / yr

Swiss 'Mini-Biogas' study

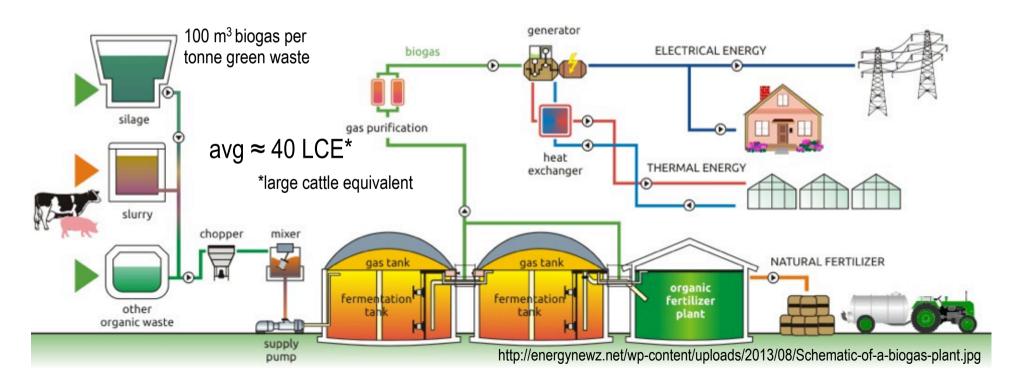


Funded by the Swiss Federal Energy Office, published Feb 2014, available on web

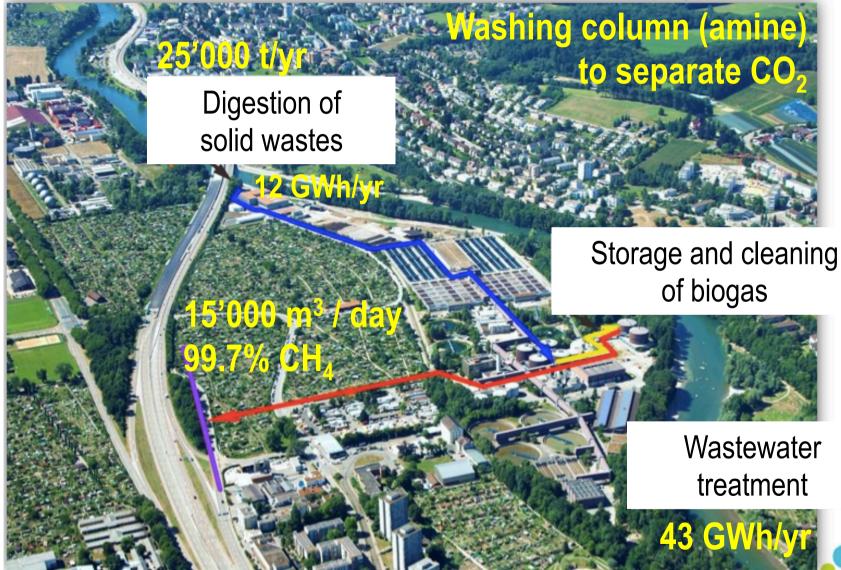


Mean cattle number per farm site

On farms, keep things simple!

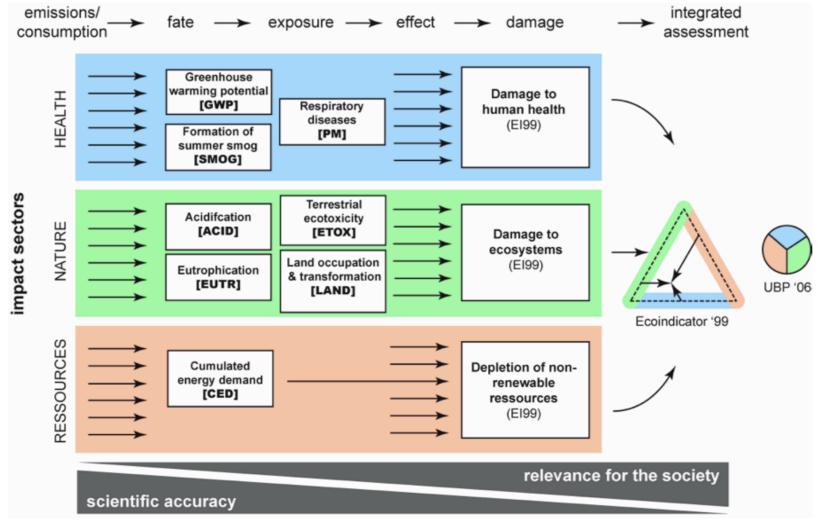


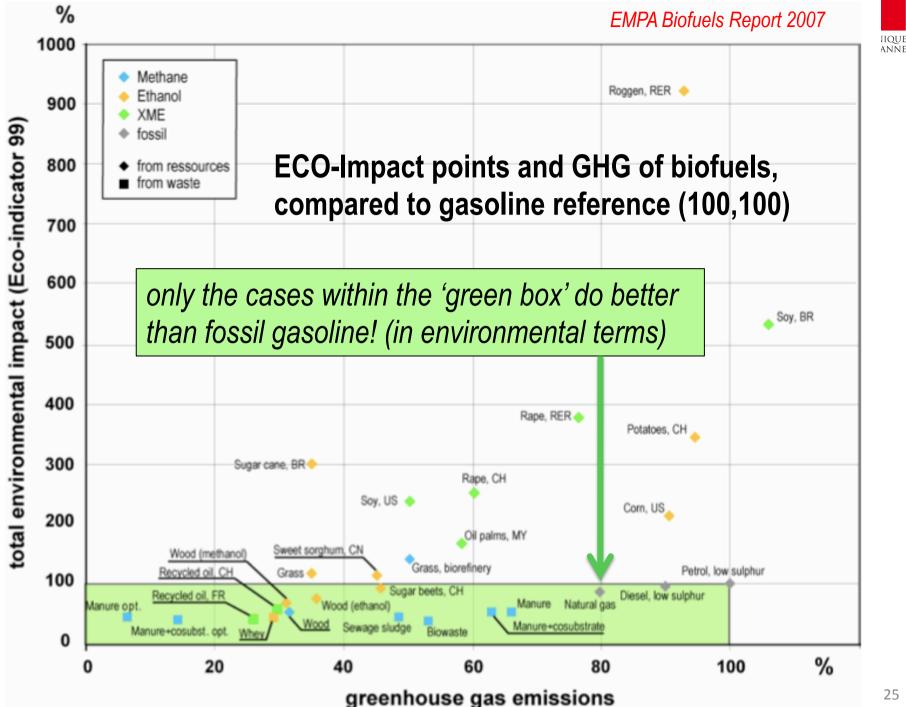
An average farm


71 m³ biogas/day => 544 GJ/yr => 17 kW- total energy equivalent Typical annual load (CH): 41% (3600h/yr) \Rightarrow with 50% elec efficiency + 10% used heat \Rightarrow SOFC size of 21 kW_{el}

Switzerland: 55'000 farm sites on 10500 km² => 19 hectare/site EU: 12.2 million farm sites; on average: 14.4 hectare/site

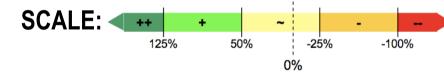
Larger production: injection of biomethane in the gas grid (Zürich wastewater treatment plant) Source: P. Dietiker (Energie 360), Seminar Biomass, Dec 2014





'Best use of biofuels in general: Swiss report (Empa, 2007, revised 2013)

LCA study (Life Cycle Analysis)



28-Sep-15

GHG-	energy carrier	Wood		Grass		Manure		Waste wood		Whey		Biowaste		Sewage sludge	
mpact	use path	min	max	min	max	min	max	min	max	min	max	min	max	min	max
	Heating	++	++												
	Cogeneration (CHP)	++	++	+	++	++	++			++	++	~	+	++	++
	Car (methane)	++	++	+	+	++	++	++	++	+	+	~	~	+	+
	Car (ethanol)	++	++	++	++					+	+				
	Municipal solid waste incineration "average technology"							++	++			~	~		
	Municipal solid waste incineration "latest technology"											++	++		
	Cement kiln							++	++					~	~

'Best use' practice of the biofuels

ECO99'-	ene	rgy carrier	Wo	od	Gra	ISS	Man	ure	Was wo		Wh	ey	Biow	aste	Sew sluc	-
impact	use path		min	max	min	max	min	max	min	max	min	max	min	max	min	max
-	Heating		~	++												
	Cogeneration (CHP)		٢	++	۲	١	+	++			+	++	-	-	+	++
	Car (methane)		+	+	۲	١	++	++	+	+	+	+	٢	١	++	++
EMPA	Car (ethanol)		۲	١	+	+					++	++				
Biofuels Report 2007	Municipal solid waste incineration "average technology"								~	+			-	-		
Report 2007	Municipal solid waste incineration "latest technology"	on											+	++		
	Cement kiln								+	+					-	-

28-Sep-15

Influence of biogas contaminants on SOFC anodes and fuel processing catalysts; biogas cleaning

Jan Van herle, Hossein Madi (EPFL) Andrea Lanzini (POLITO), Massimo Santarelli (POLITO), Matteo Lualdi (TOFC), Vitaliano Chiodo (CNR), Markus Rautanen (VTT), Jari Kiviaho (VTT), Gerardo Scibilia (SMAT)and many others

SOFCOM project Workpackage Objectives

- Effect of impurities on anode and fuel processing catalysts
 - threshold concentrations?
 - understanding poisoning mechanisms
- \rightarrow Testing on (1) reforming catalyst, on (2) cells, on (3) stacks
- \rightarrow Cleaning requirements guidelines
 - efficiency of cleaning (sorbents)

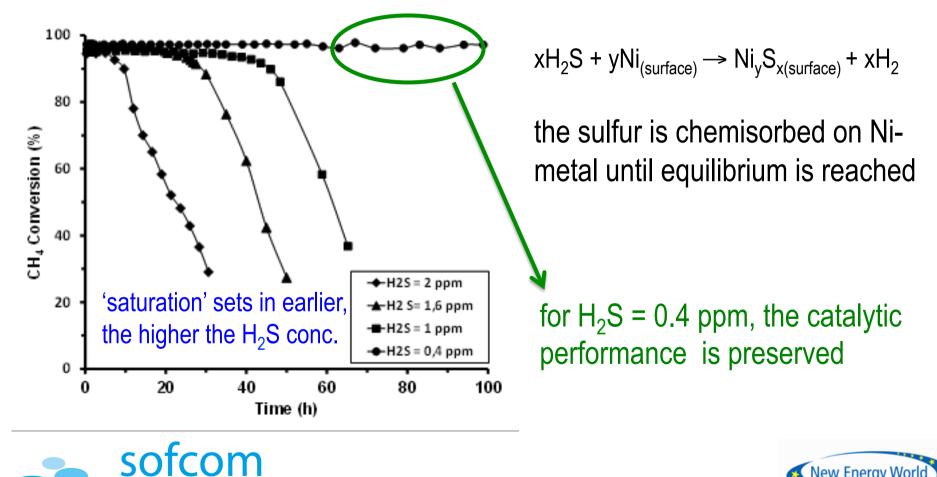
ainabili

\rightarrow Selected biogas contaminants for SOFC testing

Туре	Contaminants	range in digester biogas [ppm]
Sulfurous	H ₂ S	50-100 (average ~70)
0:1	D4	< 1
Siloxanes	D5	~1
Halogenated	(inorg.) HCl	~1
nalogenated	(org.) C ₂ Cl ₄	< 1
Hydrocarbons	C ₂ H ₄ , C ₇ H ₈	< 0.1
sofcom		New Energy
FCH-JU project	29	fuel cells & hydrogen i

Findings on biogas reforming catalyst (CNR)

- ✓ Steam reforming (T=1073K; H₂O/CH₄=2), for a fluctuating biogas composition (60/40 vol% < CH₄/CO₂< 50/50 vol%)</p>
- ✓ A commercial Ni/Al₂O₃-CaO catalyst ensures good performance in <u>clean</u> biogas and durability tests of 500 hours (GHSV=15,000 h⁻¹)
- ✓ Catalytic activity suffers in the presence of H₂S ≥0.4 ppm, while the presence of hydrocarbon compounds (≤200 ppm) and very low D5 siloxane (<0.5 ppm) resulted as less harmful.



Biogas steam reforming with H₂S (CNR)

GHSV=15,000 h⁻¹; T = 1073K; $CO_2/CH_4 = 45 / 55\%$; $H_2O/CH_4 = 2$

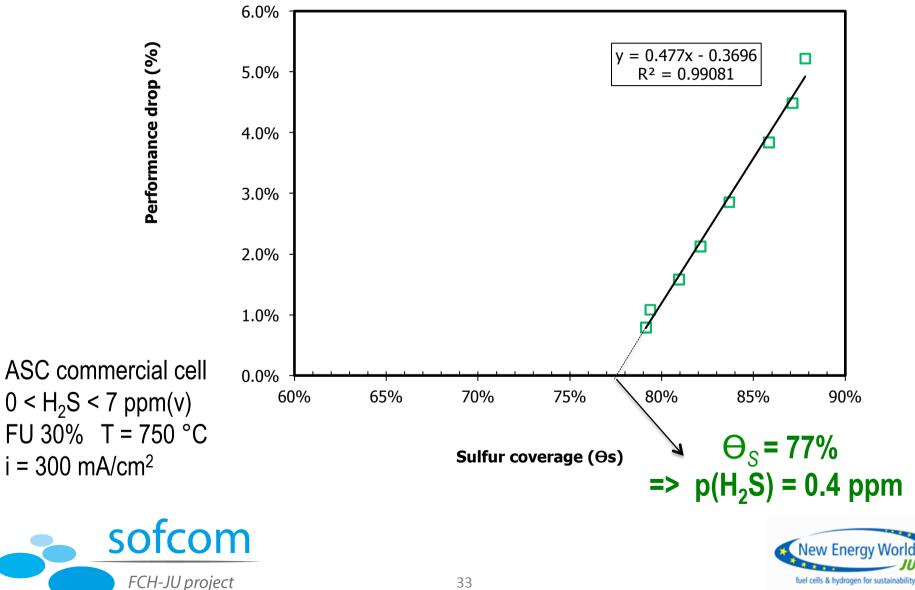
FCH-JU project

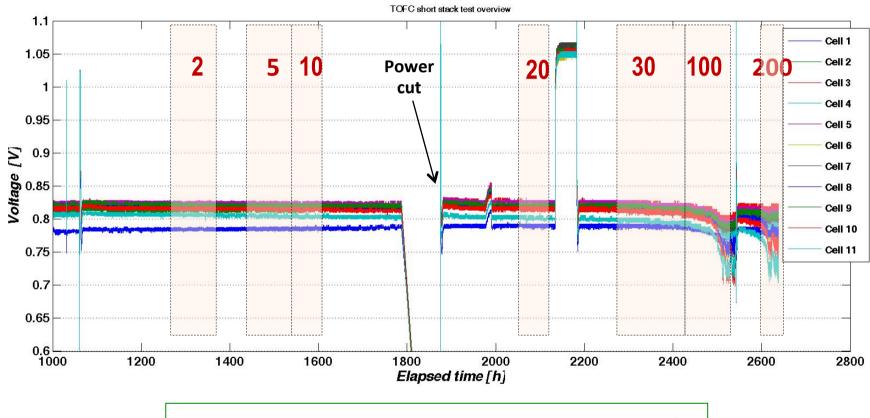
Effect of H₂S on Ni-anode

 H_2S dissociative chemisorption on Ni. Sulfur-coverage (Θ_S) of Ni is a function of temperature and pH₂S/pH₂. Anode performance drop varies linearly with sulfur-coverage (Θ_S), only above a certain treshold coverage (≈60-80%).*

$$\frac{p(H_2S)}{p(H_2)} = \exp\left(\Delta H^0 \times \frac{1 - \alpha \theta_s}{RT} - \frac{\Delta S^0}{R}\right) \qquad \text{Temkin isotherm}$$

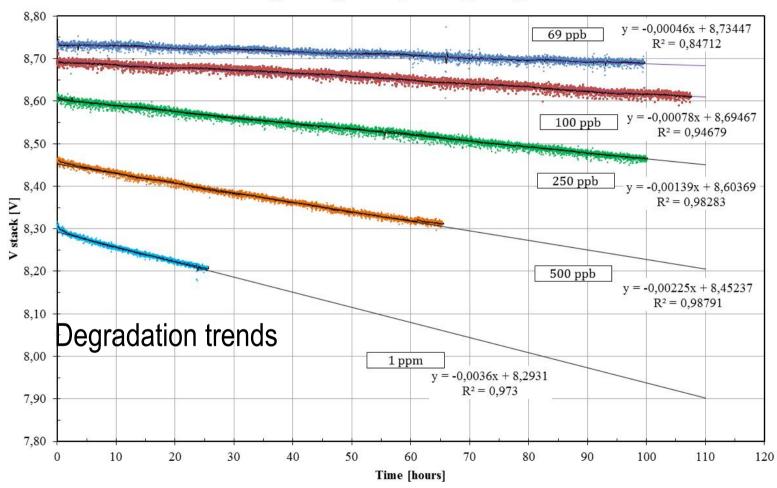
$$\theta_s = 1.45 - 9.53 \times 10^{-5}T + 4.17 \times 10^{-5}T ln \left[\frac{p(H_2S)}{p(H_2)} \right]$$


*J.B. Hansen, *Correlating Sulfur Poisoning of SOFC Nickel Anodes by a Temkin Isotherm,* Electrochemical and Solid-State Letters, 11 10 B178-B180 (2008).



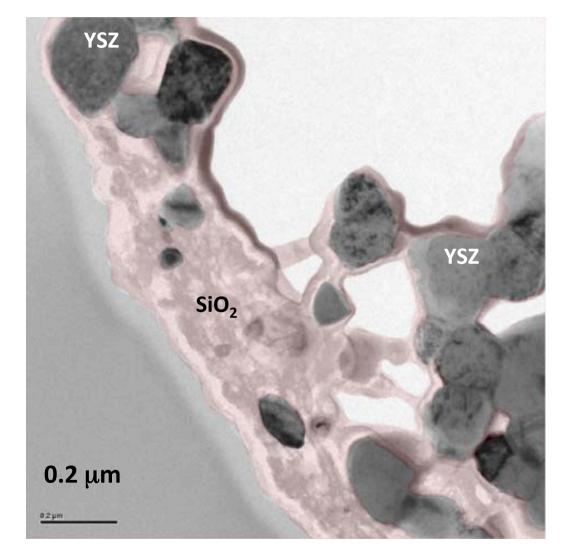
S-chemisorption on Ni (<100 ppm H_2S)

SOFC stack under HCI poisoning (0-200 ppm)


no apparent problem until 20 ppm HCI

SOFC stack with D4-siloxane poisoning (POLITO)

· 69 ppb · 100 ppb · 250 ppb · 500 ppb · 1 ppm



TEM evidence

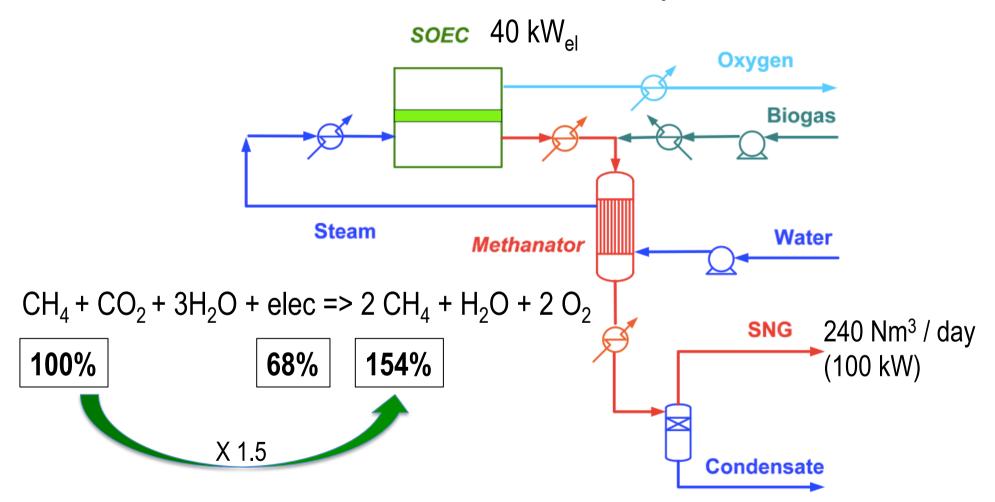
SiO₂ deposits on YSZ

Findings on biogas cleaning options (VTT, Finland)

- no efficient & economic method for simultaneous removal of H_2S + siloxanes
- H₂S and siloxanes are removed <u>separately</u>
- adsorption = the most efficient removal method for siloxanes
- for H₂S : depends on the capacity required

Final SOFCOM recommendations for contaminants tolerance

- H₂S : < 0.5 ppm
- HCI : no cleaning required
- Siloxanes : total removal



Biogas upgrade with SOEC (co)electrolysis

Source: J. Bogild Hansen, Power-to-Gas, Düsseldorf, March 2015

Danmark (100% renewable target): need for 4-8 Gw_{el} electrolysis capacity 28-Sep-15

Summary

- biogases are (very) under-used for power generation, esp. from manure, agro-residues and MSW/ISW, and are a valuable natural gas complement
- currently converted in engines (0.1-1 MW_{el}) with 30-40% electrical efficiency, their potential could be substantially increased with SOFC (50% elec. efficiency) especially in the 1 kW-100 kWe range
- issues = cost and mass production of SOFC, as well as their compatibility & robustness in the harsh exploitation reality of biogas sites